skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azzouz, Sara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geometric parameterization in which nanophotonic device layouts are defined using an analytic neural network representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by capturing multi-scalar, freeform geometries in an overparameterized representation scheme, enabling effective optimization in a smoothened, high dimensional geometric design space. We show that Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints lead to global changes in device morphology. We further show numerically and experimentally that Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of Neuroshaper reflect the ability of neural representation to augment concepts in topological design. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026